A Caffarelli-Kohn-Nirenberg type inequality on Riemannian manifolds

نویسنده

  • Yuri Bozhkov
چکیده

We establish a generalization to Riemannian manifolds of the Caffarelli-KohnNirenberg inequality. The applied method is based on the use of conformal Killing vector fields and Enzo Mitidieri’s approach to Hardy inequalities. 2000 AMS Mathematics Classification numbers: 58E35, 26D10

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Caffarelli-kohn-nirenberg Inequalities on Complete Manifolds

We find a new sharp Caffarelli-Kohn-Nirenberg inequality and show that the Euclidean spaces are the only complete non-compact Riemannian manifolds of nonnegative Ricci curvature satisfying this inequality. We also show that a complete open manifold with non-negative Ricci curvature in which the optimal Nash inequality holds is isometric to a Euclidean space.

متن کامل

Perturbation Results of Critical Elliptic Equations of Caffarelli-kohn-nirenberg Type

We find for small ε positive solutions to the equation −div (|x| −2a ∇u) − λ |x| 2(1+a) u = 1 + εk(x) u p−1 |x| bp in R N , which branch off from the manifold of minimizers in the class of radial functions of the corresponding Caffarelli-Kohn-Nirenberg type inequality. Moreover, our analysis highlights the symmetry-breaking phenomenon in these inequalities, namely the existence of non-radial mi...

متن کامل

A Caffarelli - Kohn - Nirenberg type inequality with variable exponent and applications to PDE ’ s ∗

Given Ω ⊂ R (N ≥ 2) a bounded smooth domain we establish a Caffarelli-Kohn-Nirenberg type inequality on Ω in the case when a variable exponent p(x), of class C, is involved. Our main result is proved under the assumption that there exists a smooth vector function − →a : Ω → R , satisfying div−→a (x) > 0 and −→a (x) · ∇p(x) = 0 for any x ∈ Ω. Particularly, we supplement a result of X. Fan, Q. Zh...

متن کامل

On horizontal Hardy, Rellich, Caffarelli–Kohn–Nirenberg and p-sub-Laplacian inequalities on stratified groups

In this paper, we present a version of horizontal weighted Hardy–Rellich type and Caffarelli–Kohn– Nirenberg type inequalities on stratified groups and study some of their consequences. Our results reflect on many results previously known in special cases. Moreover, a new simple proof of the Badiale–Tarantello conjecture [2] on the best constant of a Hardy type inequality is provided. We also s...

متن کامل

Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities

We consider a family of Caffarelli-Kohn-Nirenberg interpolation inequalities and weighted logarithmic Hardy inequalities which have been obtained recently as a limit case of the first ones. We discuss the ranges of the parameters for which the optimal constants are achieved by extremal functions. The comparison of these optimal constants with the optimal constants of Gagliardo-Nirenberg interpo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2010